From Aristotle to Ringelmann

Using Big Data and Network Science to Understand Productivity in Software Teams

Prof. Dr. Ingo Scholtes

Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science (CAIDAS) Julius-Maximilians-Universität Würzburg

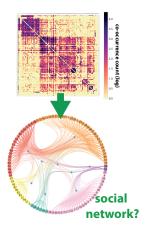
> & SNF-Professor for Data Analytics University of Zurich

ingo.scholtes@uni-wuerzburg.de

Talk @ Inetum User Conference

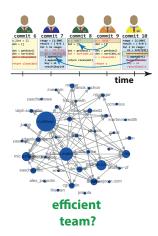
2022/11/01

Machine Learning for Complex Networks


from to when

B 12:33

12:35


12:36

Machine Learning in Noisy Relational Data

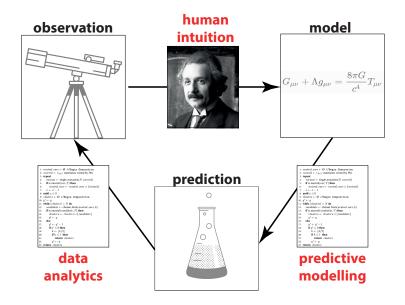
Graph Learning in Time Series Data

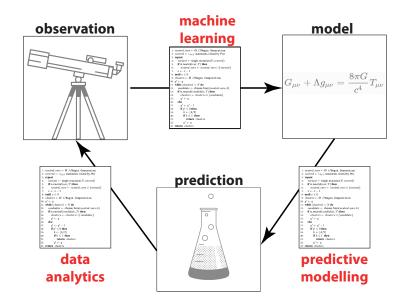
Data Science in Social Organizations

0

0

Horsehead Nebula 1375 light-years December 2021


ngo Scholtes



Learning

Machine learning

Machine learning - A primer

supervised learning

"learn" model in labeled data

glossary: supervised techniques

- linear regression
- support vector machines
- artificial neural networks
- logistic regression

unsupervised learning

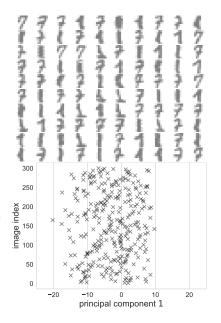
detect patterns in unlabeled data

glossary: unsupervised techniques

- principal component analysis
- autoencoders
- representation learning
- k-means clustering

Classification problems

problem: high-dimensional data

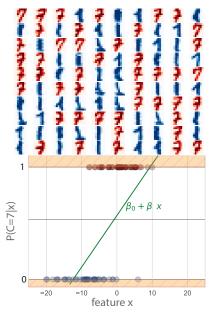

- ▶ 8 x 8 Pixel \Rightarrow \mathbb{N}^{64}
 - reality: millions of pixels

solution: dimensionality reduction

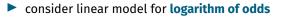
- embed data in low-dimensional
 feature space F
- example: use *d* first principal components of data, i.e. $\mathbb{F} = \mathbb{R}^d$ ($d \ll 64$)

glossary: classification problem

- ► for feature space \mathbb{F} and discrete classes \mathbb{C} find classifier $C : \mathbb{F} \to \mathbb{C}$
- fundamental problem in pattern recognition and machine learning



Statistical binary classification


- use training data to compute probability P(C = c|x) that object with feature x belongs to class c
- for dichotomous $\mathbb{C} = \{1, 7\}$ consider

 $\mathbf{P}(\mathbf{C}=\mathbf{7}|\mathbf{x})=\beta_0+\beta_1 x$

- i.e. model for **linear relationship** between feature and class probability
- ▶ we need transformation σ such that $P(C = 7|x) = \sigma (\beta_0 + \beta_1 x) \in [0, 1]$

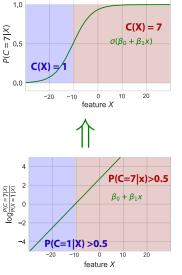
From linear to logistic model

$$\log \frac{\mathsf{P}(\mathsf{C}=\mathsf{7}|\mathsf{x})}{\mathsf{P}(\mathsf{C}=\mathsf{1}|\mathsf{x})} = \beta_0 + \beta_1 x$$

we have

 $\frac{\mathsf{P}(\mathsf{C}=\mathsf{7}|\mathsf{x})}{\mathsf{P}(\mathsf{C}=\mathsf{1}|\mathsf{x})} = \frac{\mathsf{P}(\mathsf{C}=\mathsf{7}|\mathsf{x})}{1-\mathsf{P}(\mathsf{C}=\mathsf{7}|\mathsf{x})} = e^{\beta_0+\beta_1\mathsf{x}}$

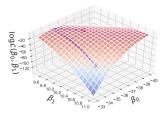
and thus


$$\mathbf{P}(\mathbf{C} = \mathbf{7}|\mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}} := \sigma(\beta_0 + \beta_1 x)$$

•
$$\sigma(x) := \frac{1}{1+e^{-x}}$$
 is called **logistic function**

glossary: logistic regression

- statistical classifier with linear decision boundary between classes
- ► logistic "activation" function maps linear model to class probabilities → cf. linear perceptron in neural networks



Fitting the model to training data

- for given β₀, β₁ logistic model gives probability P(C = 7|x) for any feature x
- for training data with features x_i and known classes c_i we can use P(c_i|x_i) to compute quality of model L(β₀, β₁)
- we use gradient ascent algorithm to find optimal parameters β₀, β₁ that maximise quality of fitted model

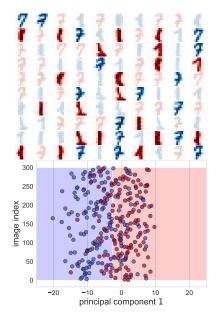
observation

- we use heuristic optimisation to "learn" optimal model parameters in training data
- machine learning = statistics + optimization

trajectory of gradient ascent algorithm in likelihood manifold for training data

gradient ascent optimization

- 1. start at random point $(\beta_0, \beta_1) \in \mathbb{R}^2$
- 2. move small step along **local** gradients
- 3. repeat 2 until convergence


Application to training images

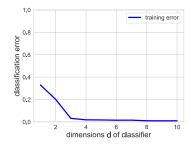
let us apply **logistic regression** to our training images (using first principal component, i.e. features $x \in \mathbb{R}$)

1. learn model in training data

gradient ascent algorithm $\hat{eta}_0 = -37.5 \qquad \hat{eta}_1 = 10.2$

- 2. classify images based on feature x
- 3. we obtain training error of 33%

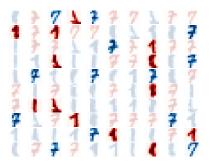
Increasing model complexity ...

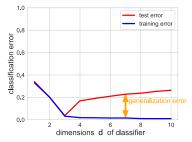

- fit *d*-dimensional logistic regression classifier $C : \mathbb{R}^d \to \{1, 7\}$ based on first *d* principal components
- how does number of model dimensions affect training error?

model dimensions	training error		
1	33 %		
2	19 %		
3	3 %		
≥ 8	0 %		

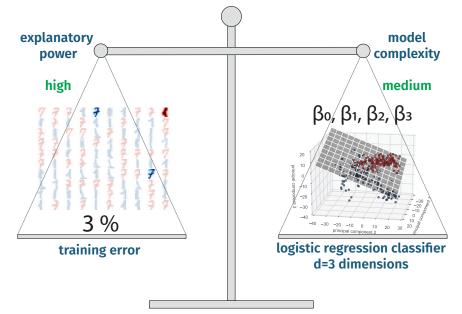
glossary: underfitting

- one-dimensional model underfits pattern in training data
- we can reduce training error by increasing model dimensionality

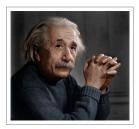

Ingo Scholtes


Generalisation to new data?

- how does our model generalise to new data?
- apply trained classifier to test set of images not used during training
- how does number of dimensions d of classifier affect test error?
 - d>3: test error $\gg \,$ training error



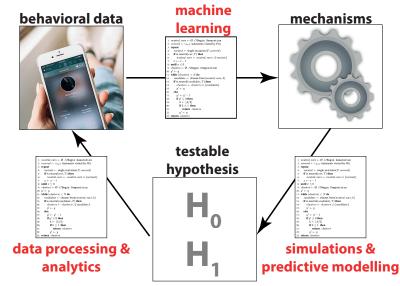
- increasing number of dimensions reduces generalisability of our model
- use of complex models with many dimensions can lead to overfitting



Model generalisability

Ingo Scholtes

Epistemological challenges of ML



fundamental challenge in ML: how to learn generalisable models

- find simplest model that still explains the data
- requires model selection techniques, e.g. cross-validation, risk minimization, minimum description length, etc.

Natural Science Social Science Computational Social Science

From Aristotle ... to Ringelmann ...

"the whole is more than the sum of its parts" \rightarrow Aristotle, 384 - 322 BC "many things have a plurality of parts and are not merely a complete aggregate but instead some kind of a whole beyond its parts" \rightarrow Aristotle, 384 - 322 BC "as soon as one couples two or several [men] to the same load, the work performed by each of them, at the same level of fatigue, decreases" \rightarrow Ringelmann, 1913

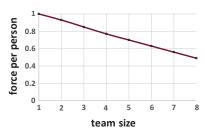
What makes teams efficient?

 Ringelmann effect: members in larger teams are less productive

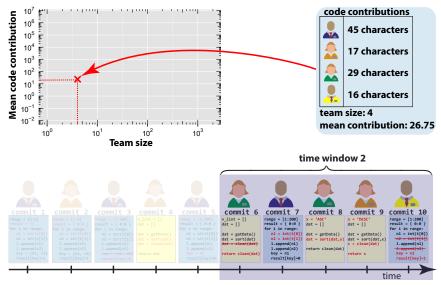
→ M Ringelmann: Recherches sur les moteurs animés: Travail de l'homme. 1913

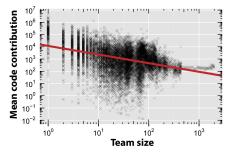
classical experiment in social psychology

Brooks' law of software project management


"Adding [wo]manpower to a late software project makes it later." \rightarrow Fred Brooks, The Mythical Man Month, 1975

possible mechanisms


- 1. motivation: "social loafing"
- 2. coordination overhead


Maximilien Ringelmann 1861 – 1931

Repository mining

Testing the Ringelmann hypothesis

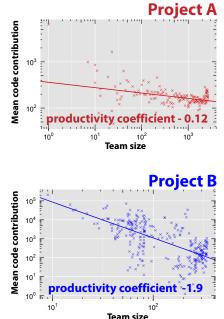
- we recover a Ringelmann effect across four orders of magnitude
- large fraction of unexplained variance = limited use as predictive model

key findings

 repository mining allows to test and quantify the Ringelmann effect at global scale

 \rightarrow I Scholtes, P Mavrodiev, F Schweitzer, Empirical Software Engineering, 2016

new ways to operationalize social science theories

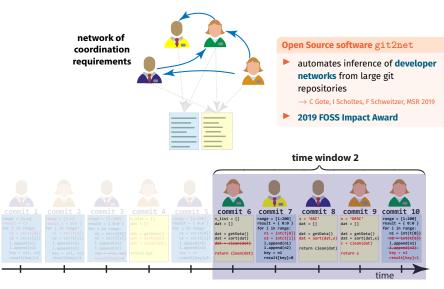

Why are some teams more efficient?

- we can apply our analysis to individual projects in our corpus
- cannot reject Ringelmann hypothesis for any project
- strong project-dependent differences of effect strength

example projects

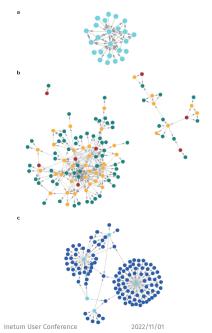
- ▶ project A: doubling of team size → increase of output by approx. 90 %
- ► project B: doubling of team size → increase of output by approx. 10 %

can we explain these differences?


Machine Learning for Complex Networks

graphs and networks

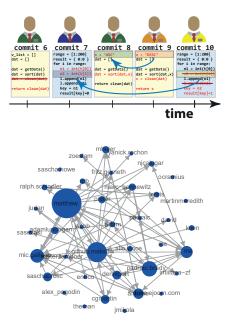
- graph or network = universal mathematical abstraction for complex system consisting of many interacting parts
- important foundation to understand collective phenomena technical, biological, and social systems
- can network perspective help us to explain differences between projects?
- problem: we lack data on on-/offline interactions between developers


$\begin{array}{l} \text{from} \rightarrow \text{to} \\ 10 \rightarrow 15 \\ 43 \rightarrow 38 \\ 22 \rightarrow 57 \\ 19 \rightarrow 35 \\ 2 \rightarrow 25 \\ 48 \rightarrow 31 \\ 30 \rightarrow 21 \\ 8 \rightarrow 7 \\ 55 \rightarrow 17 \\ 20 \rightarrow 27 \\ 3 \rightarrow 40 \\ 51 \rightarrow 5 \end{array}$	
$\begin{array}{c} 4 \rightarrow 24 \\ 56 \rightarrow 5 \\ 3 \rightarrow 57 \\ 31 \rightarrow 11 \\ 1 \rightarrow 6 \\ 40 \rightarrow 3 \\ 1 \rightarrow 6 \\ 0 \rightarrow 3 \\ 0 \rightarrow 6 \\ 0$	>

Inferring coordination networks

Network perspective on Ringelmann effect

- can coordination networks explain strength of Ringelmann effect?
- let us compare networks of project
 A and B
- how does average number of coordination links per developer change as team grows in size?
- faster growth of links related to stronger decrease of productivity
- can we study possible mechanisms at the level of individual developers?


Mechanism behind Ringelmann effect?

- we can study relationship between code ownership and individual code production
- own code = lines of code last edited by a given developer

working hypothesis

cognitive overhead involved in editing **own code** smaller compared to **foreign code**

- how does code ownership influence time needed for edits
- how does team size influence editing behavior?

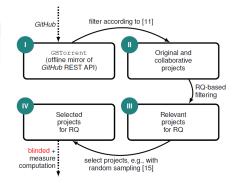
Big Data = Big Insights?

- big repository data = insights into how collaboration patterns influence productivity ...
- ... but recent studies came to different conclusions despite using similar data and methods
- example: super-linear productivity of developers in software teams

[...] previous studies only analyzed a few hundred software development groups working on highly popular software projects. In this paper, we address these issues by expanding the analysis to millions of groups [...] → G Muric et al., ACM HCI, 2019

2022 IEEE/ACM 44th International Co	nference on Software Engineering (ICSE)			
Big Data = Big Insights? Operationalising Brooks' Law in a Massive GitHub Data Set				
Christoph Gote	Parlin Marrodiev			
cgrissijbetha.ch Chair of Systems Design, ETH Zurish Zurish, Switzerland	pmarrodlov@etha.ch Chair of Systems Design, ETH Zarich Zurich, Switzerland			
Frank Schweitzer fschweitzer@ethz.ch	Ingo Scholtes' ingo scholtes/juni-warrdwrg.de			
Chair of Systems Design, ETH Zurich Zurich, Switzerland	Chair of Computer Science XV - Machine Learning for Complex Networks, Julius-Maximilians-Universität Wärzburg			
	Würzburg, Germany			
<text><text><section-header><section-header><text></text></section-header></section-header></text></text>	1 DEDUCTION D			
The well is homed under a Charles Common Mithubon MonCommercial- shared like International 4015 conse. ECH 22, Mary 1997, M. 201, PhDIAR J. M. 134	insights. This points to an important general issue relevant h empirical research beyond software engineering. Apart from a vantages in terms of everyap, resolution, or statistical confiden- tion one of hig data also introduces new threast for the validity			
PCD 32 May 20-26 2022 Producid An 154 to 2022 Copyright Ind Dar the conservation(s) ACD 1200 PE 4 4024 402 CO2006. https://doi.org/10.1545/02004531406/9	 neadlis. To address this issue, in this work, we explore four if lenges in the analysis of hig data. We study those challenges is massive GitHol-data set and argue that they are likely to explo- 			

→ C Gote, P Mavrodiev, I Scholtes, F Schweitzer, ICSE 2022


Challenge 1: Data quality

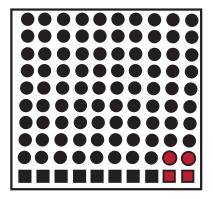
• git repository \neq software project

example in gitHub

user efarberger hosts three repositories with > 18 million (!) commits

> "We recommend that researchers interested in performing studies using GitHub data [...] target the **data that can really provide information** towards answering their research questions." \rightarrow E Kalliamvakou et al., MSR, 2014

 repository selection and sampling pipeline to systematically create balanced corpus of projects only 1.4 % of 125 million projects on gitHub fulfill criteria of collaborative, active, and non-duplicate software projects proposed in empirical software engineering literature


 \rightarrow C Gote, P Mavrodiev, I Scholtes, F Schweitzer, ICSE 2022

Challenge 2: Population validity

 careless sampling can distort results in unbalanced populations

example in gitHub

- heavily skewed distribution of team sizes
- naive random sample likely to consist of projects with smallest team sizes
- not suitable to reason about effect of team size on developer productivity
- use stratified random sampling to obtain balanced sample of projects with different team sizes
- non-linear relationship suggests
 optimal team size of ~ 10 20
 developers

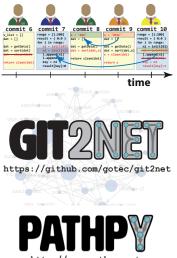
Challenge 3: Omitted variable bias

 omitted variables can lead to biased models and question causal interpretation of found relationships

exemplary issue

- larger teams associated with larger mean in-degree, i.e. more connections per developer
- larger mean in-degree associated with higher overall productivity but stronger negative effect of team size
- variant of Simpson's paradox where effect in aggregate population is reversed compared to groups
- to isolate effect of team size we control for interactions between team size and network characteristics

	Commits	LevD	CycC	NLOC	HalEff
(IC)	2.72***	10.85^{***}	5.01^{***}	6.68***	15.91***
	(0.11)	(0.14)	(0.15)	(0.13)	(0.23)
TS (log)	-0.22^{***}	-0.44^{***}	-0.42^{***}	-0.40^{***}	-0.48^{***}
	(0.03)	(0.04)	(0.04)	(0.04)	(0.06)
InD (log)	1.83^{***}	1.80^{***}	1.76^{***}	1.80^{***}	1.72^{***}
	(0.12)	(0.16)	(0.17)	(0.15)	(0.26)
TS×InD	-0.18^{***}	-0.10	-0.08	-0.10^{*}	0.05
	(0.03)	(0.04)	(0.04)	(0.04)	(0.07)
FModR	-0.92^{***}	-1.79^{***}	-2.62^{***}	-2.29^{***}	-3.28^{***}
	(0.22)	(0.28)	(0.30)	(0.27)	(0.46)
\mathbb{R}^2	0.47	0.47	0.46	0.50	0.34
Adj. R ²	0.46	0.47	0.46	0.49	0.33


 $p^{***} p < 0.001; p^{**} p < 0.01; p < 0.05$

regression analysis controlling for network characteristics

Ingo Scholtes

In summary

- data science and machine learning have become vital parts of the scientific method across disciplines
- massive repository data can yield insights into software development processes
- graph learning helps to understand how topology of interactions influences collective behavior ...
- ... but, we must carefully address
 epistemological challenges in big data

http://www.pathpy.net